| Body material | PP | PP / PVDF ¹⁾ | | | | |-----------------------------------|---|---|--|--|--| | Sealing material (optionally) | • EPDM • CSM | • FKM • FKM-F | | | | | Working temperature ³⁾ | -20 °C up to 80 °C ²⁾ | -20 °C up to 120 °C ²⁾ | | | | | Nominal size | • Type 56: DN 400 • Type 75: DN 450 up to DN 600 (in PDCPD up to DN 1500) | | | | | | Connection with pipe | Sandwich valve with connection dimension | acc. to DIN EN 1092-1 (replaces DIN 2501) - PN 10 ⁴⁾ | | | | | Length | Com | Company standard | | | | | Actuator | Infinite | ly variable gear, | | | | | Actuator | optionally pneumatic or electric actuator | | | | | | Accessories | Limit switches, shaft extension | | | | | | | | | | | | ¹⁾ Body (not medium contacted) PP, disc PVDF ²⁾Working temperatures for sealing materials: EPDM: -20 up to 90 °C CSM: -20 up to 80 °C FKM / FKM-F: -5 up to 120 °C #### Example for an invitation to tender text: Butterfly valve type 56, DN 400, PN 10, PP / EPDM, sandwich valve with connection acc. to DIN EN 1092-1 - PN 10, gear with handwheel and optical position indicator **Document:** FRANK_DB_L2_Absperrklappe Typ 56 und Typ 75_04-2012_EN ³⁾ Designed for 10 years of use with a neutral medium (water) ⁴⁾ also acc. to ANSI available ### DN 400 up to DN 600 #### Top flange <u>Profile 1 - 1:</u> Top flange dimensions in [mm] for fixation and actuator mounting (DIN EN ISO 5211) | DN | Type | C ₁ | h ₁ | d ₁ | D_4 | S | |--------------------------|------|----------------|----------------|----------------|-------|----| | 400 | F14 | 140 | 45 | 18 | 34 | 27 | | (450 ¹⁾ | | 295 | 70 + 20 | 18 | 50 | | | 500 ¹⁾ | | 295 | 70 + 20 | 18 | 50 | - | | 600 ¹⁾ | | 295 | 70 + 20 | 18 | 50 | - | | | | | | | | | | | | | | | | | ¹⁾ Stem with key (b = 14mm) | No. | Description | Number | Material | |-----|--------------------------|--------|-------------------------------| | (1 | Body | 1 | PP, PP (Disc-PVDF) | | 1a | Reinforcing ring | 2 | 1.0040 (SS 400) ¹⁾ | | 2 | Disc | 1 | PP, PVDF | | 3 | Seat*) | 1 | EPDM, CSM, FKM, FKM-F | | 4 | O-ring (A) ²⁾ | 2 | EPDM, CSM, FKM, FKM-F | | 5 | O-ring (B) | 2 | EPDM, CSM, FKM, FKM-F | ^{*)} Wearing parts 1) epoxy coated, with PP DN 400 3) other material on request | No. | Description | Number | Material | |-----|-------------|--------|--------------------------------| | 6 | O-ring (C) | 1 | EPDM, CSM, FKM, FKM-F | | 7 | Stem | 1 | 1.4024 (SUS 403) ³⁾ | | 8 | Stem holder | 1 | A2 - 1.4301 (SUS 304) | | 16 | Handwheel | 1 | PP | | 25 | Gear box | 1 | aluminium alloy EN-JL 1040 | | | | | (FC 250), epoxy coated | ### Dimensions and weights | | Dimensions in mm |-----|------------------|-----|----------------|----------------|-----|----------------|----------------|----------------|--------------------------------|---|----|-----------|-------------------------|----------------|-----|-----|-----|----------------|-------|-------| | | | | | | | | | | Hand lever Gear with handwheel | | | Weight ir | n kg / pc ⁵⁾ | | | | | | | | | DN | d | С | D ₁ | D ₂ | L | H ₁ | H ₂ | $n \times d_2$ | А | Н | Нз | А | A ₁ | A ₂ | | Н | Нз | D ₃ | PP | PVDF | | 400 | 406 | 515 | 470 | 280 | 169 | 300 | 344 | 16 x 26 | - | - | - | 212 | 95 | 76 | 498 | 373 | 69 | 250 | 36,0 | 46,0 | | 450 | 452 | 565 | 525 | 340 | 179 | 315 | 370 | 20 x 26 | - | - | - | 319 | 110 | 85 | 650 | 445 | 158 | 410 | 63,5 | 103,0 | | 500 | 502 | 620 | 575 | 340 | 190 | 350 | 400 | 20 x 26 | - | - | - | 319 | 110 | 85 | 680 | 475 | 158 | 410 | 77,0 | 124,0 | | 600 | 603 | 725 | 686 | 340 | 209 | 424 | 465 | 20 x 30 | - | - | - | 319 | 110 | 85 | 745 | 540 | 158 | 410 | 114,0 | 157,0 | ## Flow rate characteristic value 4 k_{VS} in m³/h | | Opening degree | | | | | | | |-----|----------------|------|-------|-------|--|--|--| | DN | 25 % | 50 % | 75 % | 100 % | | | | | 400 | 143 | 1960 | 5346 | 7128 | | | | | 450 | 186 | 2560 | 6981 | 9308 | | | | | 500 | 240 | 3305 | 9013 | 12017 | | | | | 600 | 316 | 4348 | 11859 | 15812 | | | | | | | | | | | | | $^{^{\}rm 4)} \mbox{Definition} \ \mbox{k}_{\mbox{\scriptsize VS}}\mbox{-value}$ see chapter T2 / technical information Tightening torque in Nm for flange bolts | DN | Torque | | | | |----------|--------|--|--|--| | 400, 450 | 80 | | | | | 500, 600 | 100 | | | | ## Working pressure¹⁾ p_B in bar | Body- | Temp. in °C - | | DN | | |----------|---------------|-----|-----|----------| | material | Terrip. III O | 400 | 450 | 500, 600 | | | | | | | | PP | -20 up to 60 | 6 | 5 | 3,5 | | FF | 80 | 3 | 3 | 2 | | | -20 up to 60 | 6 | 5 | 3,5 | | PVDF | 80 | 2 | 2 | 1,5 | | | 100 up to 120 | 1 | 1 | 1 | ¹⁾ Definition see chapter T2 / technical information ### Operating torque²⁾ in Nm | | DI | N | | | |-----|-----|-----|-----|---| | 400 | 450 | 500 | 600 | | | 910 | 3) | 3) | 3) |) | ²⁾ Referring to maximum working pressure ³⁾ on request # Hydrostatic bursting pressure 4) in bar | | | D | N | | |-----------|-----|-----|-----|-----| | | 400 | 450 | 500 | 600 | | \bigcap | 44 | 29 | 25 | 25 | ⁴⁾ Referring to maximum working temperature Values for PP ### Vacuum resistance⁵⁾ in bar | | | D | N | | |-----------|------|------|------|------| | | 400 | 450 | 500 | 600 | | \bigcap | 0,85 | 0,78 | 0,78 | 0,78 | ⁵⁾ Referring to maximum working temperature Values for PP Pressure loss diagram #### Maintenance and installation #### Gear versior #### Disassembly of the valve <u>Caution:</u> Never dismantle the valve when the pipe is under pressure. - Leave the valve slightly opened. - Remove bolts 28 and remove gear box 25. - Pull the stem 7 out of the body. - Push disc 2 together with seat 3 out of the body 1. Therefore use a lever to pull the seat and the disc through the body. - Turn the disc in full opened position. Press the seat slightly and remove disc 2 from seat 3. - Remove o-rings 4 and 5 with a suitable tool. #### Assembly of the valve - The valve assembly is to be performed in reverse order to the disassembly. - Before the assembly all parts have to be checked for damages. - All parts have to be clean. - If necessary, a silicone free lubricant can be applied to the o-rings. - Set the o-rings in the disc's notches and set the disc in the seat. - Setting the seat together with the disc in the body, the disc must be in half opened position. - The stem is to be mounted in a way that its top mark complies with the disc position. - After assembly carry out a pressure test acc. to DIN EN 12266-1. #### Notes for correct installation - Because of the full cover seat additional flange gaskets are not necessary. - Install the valve without invoking material stress, therefore be aware of flange face parallelism, axial misalignment and valve length. - For use with media containing solids or sediments the valve should be installed with the stem in horizontal position and the disc opening in flow direction. - Depending on the size chamfered stub flanges according to T2-11 have to be used.